he student scores in an examination are 35, 30, 25, 26, 40, 44, 36, 54, 64, 65, 75, 60, 70, 85, 90, 92, 46, 52, 63, 52. The daily pocket money (in Rs.) for the same students (respectively) are 110, 110, 120, 140, 150, 140, 150, 210, 200, 140, 210, 240, 300, 260, 500, 270, 310, 550, 450, 500. Find the following:- (a) Regression of scores on pocket money (b) Regression of pocket money on scores (c) Derive Pearson’s Correlation coefficient from the above two regression coefficients
Assume the SAT Mathematics Level 2 test scores are normally distributed with a mean of 400 and a standard deviation of 100. Show all work.
Assume the SAT Mathematics Level 2 test scores are normally distributed with a mean of 400 and a standard deviation of 100. Show all work. Just the answer, without supporting work, will receive no credit. (a) Consider all random samples of 64 test scores. What is the standard deviation of the sample means? (Round your answer to three decimal places) (b) What is the probability that 64 randomly selected test scores will have a mean test score that is greater than 425? (Round your answer to four decimal places)
I am trying to run a regression in excel. But I am getting this message “Regression – Estimated output table will extend beyond the bounds of the…
I am trying to run a regression in excel. But I am getting this message “Regression – Estimated output table will extend beyond the bounds of the worksheet. Please choose a different reference.” I tried to use a new workbook instead and I am still getting the same message. My sample size is 125,000+ Any advice will help.
12) An economist is studying the job market in Denver area neighborhoods.
12) An economist is studying the job market in Denver area neighborhoods. Let x represent the total number of jobs in a given neighborhood, and let y represent the number of entry-level jobs in the same neighborhood. A sample of six Denver neighborhoods gave the following information (units in hundreds of jobs). x14 30 48 28 50 25 y 2 4 5 5 9 3 Complete parts (a) through (e), given Σx = 195, Σy = 28, Σx2 = 7309, Σy2 = 160, Σxy = 1053, and r ≈ 0.847. (b) Verify the given sums Σ
Question 1 A sample of 40 endangered species was obtained and the length of time (in months) since being placed on the list was recorded for each…
Question 1 A sample of 40 endangered species was obtained and the length of time (in months) since being placed on the list was recorded for each species. A stemplot of these data follows. In the stemplot 5|2 represents 52 months. Please explain how to solve. Reference: Ref 1-7 The number of species in the sample that have been on the list for more than 6 years is 10. 12. 14. 18.